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HansV. Wester hoff and BorisN. Kholodenko:
Metabolic Engineering in the Post Genomic Era

e Congder the cell asa production organism
rather than asa production line.

 Theorganism may largely do away with
much of the engineering by invoking its

homeostatic contr ol mechanisms

 Metabolic engineering should be directed
at optimizing both the production flux and
the functioning of the organism itself




Challengesin engineering networ ks of
known genes & regulators

Obtaining high levels of expression of desired
genes

Obtaining appropriate balance in levels of
expression of pathway genes

Consider regulation at enzyme level and feedback
connections

Consider the alternation of global cell physiology
from the manipulation




Obtaining high levels of expression of
desired genes

e Active promoters
« MRNA stability & trandational efficiency
e Functionally active protein




Obtaining appropriate balance in levels
of expression of pathway genes

Library of promoters of varying strength

Combinations of promoters & terminators,
RBS for multicistronic mRNAS

RNA regulators (antisense, RNA binding
roteins)

Plasmid vs chromosomal |ocation




Taking into account the regulation at
enzyme level and feedback connections

* |nterconnections among regulatorsand
small molecules

e Pickingthebest enzyme from various
sour ces or evolve such attributes




We may know a great deal about individual
components but the overall metabolic consequences
of various alterations under defined conditions may

not be so easily predicted

* Need detalled experiments to define which
regulatory interactions are most important
In a situation

* Functional activity of aprotein depends on
more than gene expression




A quick example from
aer obic/anaerobic E. col
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denotes repress and denotes activate.

Active ArcA~P (anaer obic situation) stimulates PFL and cyd




PFL flux higher in arcA mutant
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Why arethe PFL fluxes higher in the arcA mutant?
(Since Arc~P activates pfl expression):
PFL isreactivated by YfiD

MG 1655 10% O2
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Overall series of actions (microaerobic)

arcA- leads to lower cyd

Low cyd can not handle all NADH
and the level of reduced NADH rises

Higher NADH leads to expression of yfiD
Higher YfiD reactivates Pfl leading to higher flux

through Pfl in arcA mutant in microaerobic
conditions




Per spective

 Need avariety of experimentsto see what
arethe important regulatory eventsin the
network under a particular circumstance

« Methodsto analyze a number of
parametersin defined sample




Sometimes you can take advantage of the
alter nation of global cell physiology from a
manipulation

e Alter levels of certain cofactors, sensors,
transporters




Redox reactions involving NADPH
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Pathway

* The pentose pathway
that usually supplies
most of cellsNADPH
IS much reduced in the
modified stain

M easurements made
by GC-MSof C-13
|labelled amino acidsin
steady state cultures

measurements
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If there is higher NADPH
avallability can we use thisin
another pathway?
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Challengesin engineering networks
containing unknown genes & regulators

| dentifying which genesto try to modify (define network)
M athematical models
Gene expression microarray experimentsor proteomic measurements
Tracing phosphorylation networ ks and connections
Similarities of protein-protein interaction networksto those of other

species
Genetic exploration
Individual & multiple gene knockouts or overexpression
Adaptation to higher production and genome analysis
Employing novel regulatory factorsto affect pathway genes

Use of high throughput screens, enrichments or selections




Considerations

 How to identify and control genes useful for
a specific metabolic engineering goal ?

 Onestrategy- use high-throughput meansto
gather data, merge in model-computational
and analytical approach

e Another strategy- use random approach
genetic based-can find thingsyou don’t
already know about




lal E. coli regulatory networ
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Many global regulators affect a large
number of genes

Table 1

Summary of transcriptional interactions of major TFs, in the transcriptional regulatory network of E. coli.

Transcription Genes Co-regulators’ TFs Sigma Functional classes Farmily
factor regulated* regulated* factors® of genes regulated® (members)T

CRP 197 47 22 e 48 CRP (2)

IHF 101 28 70,64,38 26 HI-HNS (2)
FNR 111 20 70,6430 22 CRP (2)

FIS 76 15 e 20 EBP (14)

ArcA 63 18 70,38 17 OmpR (14)

Lrp 53 14 [lli] 15 AsnC (3)

Hns 26 14 70,38,32 17 Histone-like (1)
Narl¥ 65 10 fILes 14 LuxR/UhpA (17)
OmpR 10 it OmpR (14)
Fur® 28 70,19 Fur (2)

PhoB 26 I OmpR (14)
CpxR g9 OmpR (14)
SoxRS 70,38 AraC/XylS (24)
Mic* it NagC/XyIR (7)
CspA* 10 Cold (9)

Rob** " s AraCiXylS (27)
PurR** 28 a® GalR/Lacl (13)

*Total number of genes regulated directly. "TNumber of different TFs with which at least a gene or TU is jointly co-regulated. *Number of regulated
genes that codify for TFs. SList of o factors of the regulated promoters. "Number of functional classes of the gene products regulated [44].

TrF family and in parenthesis the number of members of the family. In addition to the seven global TFs considered here there are TFs suggested by
¥Babu and Teichmann, 2003, [42**] and **Shen-Orr et a&l., 2002, [50*].
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Some regulatorsrespond to many
environmental growth conditions

| HHHHHHI_I.—'

CRP IHF Lmpp Hmnz FIZ FMRER ArcA MarA SoxS Marlk Hob FruR Mic OmpRCpxR 27
@ (1) {8 (9 (5 TFs

Regulatory protsins

Current Opinion in Microbiology

Global environment growth conditions in which TFs are regulating. To see the detailed list of conditions see RegulonDE page: hitp:Y
www .cifn.unam.mx/Computational_Genomics/regulondb/SupMat/conditions. Numbers in brackets indicate how many additional TFs participate in
the same number of conditions.

Martdntonio & Coll ado-Vides, 2003




| dentifying important
regulatorsin your network

| ndividual specific regulatorsfor operon
Global regulators

2-component regulators
Small RNA regulators




Test phenotypes of many regulatory genesunder many
different conditions-database.

e If aregulator has
effect under conditions
areimportant to
production conditions,

can manipulate those
regulatorsand look for
effectson thedesired
system?

«Zhou et al JBact 185, 4956, 2003 screened many mutantsin hundreds
of conditions




General Approachesto identifying functions of
regulators

What proteins bind to what gene
regulatory regionsin the chromosome?

Address by variations of ChlP-chip

What regulatory proteinsinteract with
each other?

Address with two-hybrid system variations or
crosslinking and chemical analysis, protein
Interaction networ ks




Correationsto deter mine choices of
genesto modify

e Two-component regulators often increased
In level of their gene expression with
condition wherethey exert their activity




Example

e |n Clostridium:

 Which proteinsareinvolved in initial
Kinase reaction that starts solvent
formation and spor ulation




|f ther e were kinases that might
phosphorylate SpoOA in Cac... how could we
look for them?

Genome analysis. Compar e genome
characteristics of phosphorelay kinases with

those of Bacillus subtilis

Cac has 36 His Kinases, 5 of them:
LIKELY CANDIDATES?

*Experimental analysis:
eSuitable temporal expression patterns?
eStructural ssimilarity?

Papoutsakis 2005




All Cac HisKinase Expression Profiles
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Another strategy iIsmore
biochemical

e Useaction of proteinsin vitroto follow
regulatory networ k




Tracing phosphorylation networ ks

 Aregulator is
autophosphorylated
and then tested to see
what other proteinsit
can transfer the
labeled phosphateto
In vitro
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Action of small RNAsIn regulation

| dentify possible RNAS
by bioinformatics

Do microarray with these
Intergenic regions

L ook at expression
patterns of the RNAsS

M ake over expression and
deletion mutants

Explorethese mutants by
microarray to identify
genes under their control
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Take advantage of the complexity of regulatory
networ k

let genetics help find useful changesto make




just want improved
production?

e Find out mechanism later

 Random or artificial evolution approach
o Selection or screen then analyze




Seeking effects of gene knockouts, gene
over expression, or regulatory sequence insertions

e Largescalelibrary of variants

e Screen by optical sorting system based on
metabolite or key protein tofind +s

e Grow under stress of desired production
condition- look for those tagged mutants
found in higher abundance or greatly
diminisned in population




Genome sequence approach

 Adaptation of cellsto higher growth-
production state-analyze genome of
selected variant to see what has changed

e Used in industry to characterize
production strain vsoriginal parent




Examining the effect of novel
transcriptional regulators

| ntroduce mutationsin known regulators
Artificial Zn finger proten variants

Find those that generate desired
phenotype

Then can perhapsidentify and
manipulate the affected genes and see
how the change produced its effect




Mutations in known regulators
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Zn fingers

e Directly select
artificial zinc finger
proteins from a zinc
finger protein library-
can join to other
protein
Bae & Kim Mol Cell 376,
2006 (Fa)(F2)(Fr) £

5
TATATAGCGNNMGCGTATATATCAAGTCAATCGGTCC
. ATATATCGCNNNCGCATATATAGTTCAG T'TAGCCAGG \ \

Bulyk et al PNAS 7158, 2001
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